Telegram Group & Telegram Channel
📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/kr/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик



tg-me.com/dsproglib/6430
Create:
Last Update:

📈 Холивар: NumPy против pandas против PySpark — кто рулит в данных

Дата-сайентисты, делитесь: чем копаете свои миллионы строк?

🐍 NumPy — минимализм и математика
• Основа всех ML-библиотек.
• Векторы, матрицы, broadcasting — строго, быстро, эффективно.
• Если ты знаешь np.dot и np.linalg, тебя зовут в глубины ML.

Но:
• Строгая типизация и отсутствие удобных табличек.
• Хотел сделать фильтр по колонке? Сначала reshape.
IndexError: too many indices — старая знакомая.

📊 pandas — король табличек
df.head() — и ты уже видишь суть.
• Гибкость, группировки, фильтрации — словно Excel на стероидах.
• Подходит и для EDA, и для препроцессинга.

Но:
• Большой датасет? Привет, out of memory.
• Интуитивно, но не всегда предсказуемо.
SettingWithCopyWarning — и ты не уверен, изменил ли что-то вообще.

🔥 PySpark — big data и кластеры
• Когда данных слишком много для pandas.
• Распределённые вычисления, lazy evaluation, Spark SQL.
• Подходит для продакшена, когда ноутбук уже плачет.

Но:
• Стартуем JVM… подождите немного.
• Написал три строчки — получил лог на 300 строк.
• Не для быстрых экспериментов.

А вы кто: numpy-ниндзя, pandas-мастер или spark-инженер? Или по чуть-чуть от каждого?
Инструкция о том, как оставить комментарий: https://www.tg-me.com/kr/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6430

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How To Find Channels On Telegram?

There are multiple ways you can search for Telegram channels. One of the methods is really logical and you should all know it by now. We’re talking about using Telegram’s native search option. Make sure to download Telegram from the official website or update it to the latest version, using this link. Once you’ve installed Telegram, you can simply open the app and use the search bar. Tap on the magnifier icon and search for a channel that might interest you (e.g. Marvel comics). Even though this is the easiest method for searching Telegram channels, it isn’t the best one. This method is limited because it shows you only a couple of results per search.

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from kr


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA